Mathematic Review

2 points distance

Multivariables Normal distribution

The multivariate normal distribution of a k-dimensional random vector \(X = (X_1,...,X_2)^\intercal\) can be written in the following notation:

\[X \sim \mathcal{N}(\mu,\Sigma)\]

With

  • \(\mu = E[X] = E[X_1]\): k-dimensional mean vector

  • \(\Sigma = Cov[X_i,X_j]\): k x k covariance matrix

The probability density function (PDF)

\[\begin{aligned} f(x|Y=k) = \frac{1}{(2 \pi)^\frac{k}{2}|\Sigma|^{\frac{1}{2}}}exp\{ -\frac{1}{2}(x-\mu)^\intercal \sum\nolimits^{-1}(x-\mu)\} \end{aligned}\]

An example of a multivariate normal distribution with

\[\begin{aligned} \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 3/5 \\ 3/5 & 2 \end{bmatrix} \end{aligned} \]

Covariance matrix

Transpose matrix

Bayesian